
Sol-Assignment 4 - Systemes linéaires

May 7, 2025

1 Assignment 4: Méthodes itératives pour systèmes linéaires
Avant de voir le code disponible de ce test et avant de commencer à rédiger vos
réponses, prenez le temps de réfléchir à la manière dont vous pouvez organiser le
travail.

• Pensez à quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.

• Réfléchissez à la structure de votre code (vous pouvez faire un brouillon sur
papier).

• Réfléchissez aux sections du cours qui vous seront utiles pour l’analyse de vos
résultats.

On considère les systèmes linéaires paramétrisés de dimension 𝑛 de la forme 𝐴𝛽x = b𝛽, où

𝐴𝛽 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓(1)𝑔(0) 𝑓(𝛽)𝑔(0) 𝑓(𝛽2)𝑔(0) 0 ⋯ 0
𝑓(𝛽)𝑔(1) 𝑓(1)𝑔(1) 𝑓(𝛽)𝑔(1) 𝑓(𝛽2)𝑔(1) 0 0
𝑓(𝛽2)𝑔(2) 𝑓(𝛽)𝑔(2) 𝑓(1)𝑔(2) 𝑓(𝛽)𝑔(2) 𝑓(𝛽2)𝑔(2) 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 ⋯ 0 𝑓(𝛽2)𝑔(𝑛 − 1) 𝑓(𝛽)𝑔(𝑛 − 1) 𝑓(1)𝑔(𝑛 − 1)

⎞⎟⎟⎟⎟⎟⎟
⎠

∈ ℝ𝑛×𝑛;

b𝛽 ∈ ℝ𝑛 tel que b𝛽 = A𝛽 1 (c-à-d x = 1 est la solution exacte).

On choisi 𝑓(𝑥) = 1 − cos(𝜋𝑥
2), 𝑔(𝑥) = 1

𝑛 cosh(𝜋𝑥
𝑛) et 𝛽 ∈ [0, 1].

Pour une taille n et une valeur beta de 𝛽 données, on peut calculer 𝐴 et 𝑏 en utilisant la fonction
matrix(n, beta) définie plus loin.

[1]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[2]: def matrix(n, beta) :
Returns A_\beta and b given in the exercice.

f = lambda x: 1.0 - np.cos(np.pi/2*x)
g = lambda x: np.cosh(np.pi * x / n) / n
vec = np.array([g(k) for k in range(n)])

1

diagonals of the matrix
d = [f(1)*vec,

f(beta**1)*vec[:-1],
f(beta**2)*vec[:-2]]

A = np.diag(d[0],k=0) + \
np.diag(d[1],k=1) + np.diag(d[1],k=-1) + \
np.diag(d[2],k=2) + np.diag(d[2],k=-2)

b = A.dot(np.ones(n))

return A,b

1.1 Partie 1
Ècrire une fonction Richardson, qui implemente la méthode de Richardson stationnaire précondi-
tionné. La fonction doit avoir la structure suivante:

def Richardson(A, b, x0, P, alpha, max_iter, tol) :
Stationary Richardson method to approximate the solution of Ax=b
#
INPUTS:
A : system matrix
b : system vector
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
max_iter : maximum number of iterations
tol : tolerance on the relative residual
#
OUTPUTS
xk : approximate solution to the linear system
rk : list of relative norms of the residuals

[3]: def Richardson(A, b, x0, P, alpha, max_iter, tol) :
Stationary Richardson method to approximate the solution of Ax=b
#
INPUTS:
A : system matrix
b : system vector
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
max_iter : maximum number of iterations
tol : tolerance on the relative residual
#
OUTPUTS
xk : approximate solution to the linear system

2

res_norm : list of relative norms of the residuals

xk = np.copy(x0)
rk = b - A.dot(xk)
res_norm = [np.linalg.norm(rk)]
rel_res = res_norm[-1] / np.linalg.norm(b)

k = 0
while k < max_iter and rel_res > tol:

zk = np.linalg.solve(P, rk)
xk += alpha*zk
rk = b - A.dot(xk)

res_norm.append(np.linalg.norm(rk))
rel_res = res_norm[-1] / np.linalg.norm(b)

k += 1

if k >= max_iter and rel_res >= tol:
print(f'Richardson did not converge in {max_iter} iterations; '

f'the relative residual is {rel_res:.3e}')
else:

print(f'Richardson method converged in {k+1} iterations '
f'with a relative residual of {rel_res:.3e}')

return xk, res_norm

1.2 Partie 2
On sait que si la matrice 𝐴𝛽 est diagonale dominante stricte par ligne, alors la méthode de Gauss-
Seidel converge. Ètablir si c’est le cas lorsqu’on fixe 𝛽 = 0.4, pour une taille n=20.

Dans le cas affirmatif, calculer la solution du système par la commande Richardson en choisissant
les méthodes de Jacobi et Gauss-Seidel. On fixe une tolérance tol = 10−10 et le point de départ
x(0) = 0.

Est-ce que les résultats obtenus sont en accord avec la théorie ? (Commentaire 1)

Aide: la somme des valeurs (en valeur absolue) dans toutes les lignes d’une matrice M peut etre cal-
culée de la manière suivante: v = np.sum(np.abs(M), axis=1). L’output v est un numpy.array,
dont longeur est égale au nombre des lignes de la matrice M.

[4]: n = 20
beta = 0.4
[A, b] = matrix(n, beta)

3

check if A is diagonally dominant
x1 = np.sum(np.abs(A - np.diag(np.diag(A))), axis=1)
x2 = np.abs(np.diag(A))
print(f'A is diagonally dominant: {all(x1 < x2)}')

x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print('\nJacobi preconditioner')
P = np.diag(np.diag(A)) # Jacobi preconditioner
x, iters = Richardson(A, b, x0, P, 1, nmax, tol)
err = np.linalg.norm(x - np.ones(n))
print(f'The error is: {err:.3e}')

print('\nGauss-Seidel preconditioner')
P = np.tril(A, 0) # Gauss-Seidel preconditioner
x, iters = Richardson(A, b, x0, P, 1, nmax, tol)
err = np.linalg.norm(x - np.ones(n))
print(f'The error is: {err:.3e}')

A is diagonally dominant: True

Jacobi preconditioner
Richardson method converged in 26 iterations with a relative residual of
9.899e-11
The error is: 8.369e-10

Gauss-Seidel preconditioner
Richardson method converged in 14 iterations with a relative residual of
3.384e-11
The error is: 6.420e-10

Commentaire 1 Dans le cas 𝛽 = 0.4, on vérifie numeriquement que la matrice 𝐴𝛽 est à diagonale
dominante strict. Donc on déduit que les méthodes de Jacobi et Gauss-Seidel convergent. En fait,
on observe que Jacobi converge en 26 itérations et Gauss-Seidel en 14 itérations.

1.3 Partie 3
Tracer le graphe du rayon spectral 𝜌(𝛽) = max |𝜆𝐵(𝛽)| (utiliser la commande np.linalg.eig pour
les valeures propes) des matrices d’itération de Jacobi 𝐵𝐽(𝛽) et de Gauss-Seidel 𝐵𝐺𝑆(𝛽) en fonction
de 𝛽, pour 𝛽 = 0, 0.1, 0.2, ⋯ , 1.
D’après ce graphe, que peut-on dire sur la convergence des deux méthodes en fonction du paramètre
𝛽? Quelle méthode utiliseriez-vous pour résoudre le système dans le cas 𝛽 = 0.7 ? Pourquoi ? Est-ce
qu’on s’attend au même nombre d’itérations que dans le cas 𝛽 = 0.4 ? (Commentaire 2)

4

[5]: n = 20
betas = np.linspace(0,1,11)

rho_j, rho_gs = [], []
for beta in betas :

[A, b] = matrix(n,beta)

Jacobi
Pj = np.diag(np.diag(A))
Bj = np.eye(n) - np.linalg.solve(Pj, A)
rho_j.append(np.max(np.abs(np.linalg.eig(Bj)[0])))

Gauss-Siedel
Pgs = np.tril(A,0)
Bgs = np.eye(n) - np.linalg.solve(Pgs,A)
rho_gs.append(np.max(np.abs(np.linalg.eig(Bgs)[0])))

[6]: plt.figure()

plt.plot(betas, rho_j, 'b:o', label='Jacobi')
plt.plot(betas, rho_gs, 'g:o', label='Gauss-Seidel')

plt.plot(np.linspace(0,1,50), np.ones(50), 'r-');

plt.xlabel(r'β', fontsize=15)
plt.ylabel(r'$\rho(B)$', fontsize=15)
plt.xlim([0,1])
plt.legend(fontsize=15)
plt.grid(linestyle='--', linewidth=.5)
plt.show()

5

Commentaire 2 On voit que le rayon spectral de la matrice d’itération de la méthode de Gauss-
Seidel est toujours plus petit que celui de la matrice d’itération de la méthode de Jacobi, ce qui
signifie que la méthode de Gauss-Seidel converge plus vite. En outre, on voit que la méthode
de Jacobi converge seulement pour 𝛽 plus petit qu’une valeur proche à 0.6, alors que celle de
Gauss-Seidel demeure convergente jusqu’à 𝛽 = 0.8 à peu près.

Si 𝛽 = 0.7, on doit forcemment utiliser la méthode de Gauss-Seidel pour garantir la convergence
des itérations. Avec reférence au cas 𝛽 = 0.4, on s’attend un nombre plus élevé d’itérations, car le
rayon spectral de la matrice 𝐵 est plus haut.

1.4 Partie 4
Maintenant, on considère la matrice 𝐴𝛽 et le vecteur b𝛽 que l’on obtient pour n=100. Dans ce cas,
pour 𝛽 = 0.25 et 𝛽 = 0.50, tracer et comparer les graphes semilogy de la norme du résidu r(𝑘) en
fonction du nombre d’itérations pour la méthode de Jacobi.

Donner un commentaire, en considerant les pentes des courbes obtenues. Est-ce qu’on s’attend de
résultats similaires pour la méthode de Gauss-Seidel ? (Commentaire 3)

[7]: n = 100
x0 = np.zeros(n)
tol = 1e-10

6

nmax = 500

beta = 0.25
[A, b] = matrix(n,beta)
P = np.diag(np.diag(A))
_, res_beta25 = Richardson(A, b, x0, P, 1, nmax, tol)

beta = 0.5
[A, b] = matrix(n,beta)
P = np.diag(np.diag(A))
_, res_beta50 = Richardson(A, b, x0, P, 1, nmax, tol)

Richardson method converged in 14 iterations with a relative residual of
3.789e-11
Richardson method converged in 72 iterations with a relative residual of
8.737e-11

[8]: plt.figure()

plt.semilogy(res_beta25, 'b:o', label=r'$\beta = 0.25$')
plt.semilogy(res_beta50, 'g:o', label=r'$\beta = 0.50$')

plt.legend(fontsize=15)
plt.xlabel(r'k', fontsize=15)
plt.ylabel('Absolute Residual', fontsize=15);
plt.grid(linestyle='--', linewidth=.5)
plt.show()

7

Commentaire 3 On voit très clairement que, si on prend 𝛽 = 0.50, la convergence est beaucoup
plus lente (la pente du graphe est inférieure). Ceci nous confirme que le rayon spectral de la matrice
d’itération de la méthode de Jacobi croît lorsque 𝛽 augmente. Les conséquences sont une vitesse
de convergence réduite et, pour 𝛽 plus grand qu’une certaine valeur critique (que l’on peut estimer
être ∼ 0.6), la non-convergence de la méthode.

Sur la base de resultats obtenus dans la Partie 3, on sait que le rayon spectral de la matrice
d’iteration de Gauss-Seidel a la meme comportement (par rapport a 𝛽) que ce de la matrice de
Jacobi, mais c’est plus petit. Par conseuquent, avec Gauss-Seidel on aurait encore une convergence
plus lente si 𝛽 = 0.50, mais le nombre d’iterations serait inferieur que dans le cas de Jacobi.

1.5 Partie 5
D’aprés la théorie vue en classe, est-il possible d’ameliorer la convergence de la méthode de Richard-
son stationnaire avec le préconditionneur de Jacobi ? Si oui, comment ?

Verifiez votre hypothése numeriquement, en choisissant n=100 et 𝛽 = 0.5. Donner un commentaire
sur les résultats obtenus. (Commentaire 4)

[9]: beta = 0.5
[A, b] = matrix(n,beta)

8

P = np.diag(np.diag(A))
lambdas, _ = np.linalg.eig(np.linalg.solve(P, A))
alpha_opt = 2 / (lambdas[0] + lambdas[-1])
_ = Richardson(A, b, x0, P, alpha_opt, nmax, tol)

Richardson method converged in 34 iterations with a relative residual of
9.405e-11

Commentaire 4 La matrice 𝐴 est symètrique et definie positive. Comme le préconditionneur
de Jacobi est aussi symètrique et defini positif, on peut mimimiser le rayon spectral de la matrice
d’itération en choisissant

𝛼 = 2
𝜆min(𝑃 −1𝐴) + 𝜆max(𝑃 −1𝐴) .

Les résultats numériques confirment les attentes théoriques, car la méthode maintenant converge
en seulement 34 itérations, au lieu qu’en 72 itérations.

1.6 Partie 6
La convergence peut être encore ameliorée si on considère des méthodes de Richardson non-
stationnaires, dans lesquels la valeur du paramètre 𝛼 change au cours des itérations. L’example le
plus simple est donné par la méthode du Gradient Preconditionee.

Écrire une nouvelle fonction PrecGradient, en modifiant de manière appropriée la fonction
Richardson créée dans la Partie 1. Vérifier la convergence de la méthode en prenant n=100 et
𝛽 = 0.5, et en considerant: * le cas pas preconditionné (c-à-d P = np.eye(n)); * le précondition-
neur de Jacobi.

Donner un commentaire sur la base des résultats obtenus. (Commentaire 5)

[10]: def PrecGradient(A, b, x0, P, max_iter, tol) :
Preconditioned gradient method to approximate the solution of Ax=b
#
INPUTS:
A : system matrix
b : system vector
x0 : initial guess
P : preconditioner
max_iter : maximum number of iterations
tol : tolerance on the relative residual
#
OUTPUTS
xk : approximate solution to the linear system
res_norm : list of relative norms of the residuals

xk = np.copy(x0)
rk = b - A.dot(xk)
res_norm = [np.linalg.norm(rk)]
rel_res = res_norm[-1] / np.linalg.norm(b)

9

k = 0
while k < max_iter and rel_res > tol:

zk = np.linalg.solve(P, rk)

alpha = zk.dot(rk) / zk.dot(A.dot(zk)) # line to be added !!

xk += alpha*zk
rk = b - A.dot(xk)

res_norm.append(np.linalg.norm(rk))
rel_res = res_norm[-1] / np.linalg.norm(b)

k += 1

if k >= max_iter and rel_res >= tol:
print(f'Precondioned Gradient did not converge in {max_iter} iterations;

↪ '
f'the relative residual is {rel_res:.3e}')

else:
print(f'Precondioned Gradient method converged in {k+1} iterations '

f'with a relative residual of {rel_res:.3e}')

return xk, res_norm

[11]: n = 100
beta = 0.5
[A, b] = matrix(n, beta)

x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print("Without preconditioning")
P = np.eye(n)
_ = PrecGradient(A, b, x0, P, nmax, tol)
print("\n")

print("Using Jacobi preconditioner")
P = np.diag(np.diag(A))
_ = PrecGradient(A, b, x0, P, nmax, tol)

Without preconditioning
Precondioned Gradient method converged in 228 iterations with a relative
residual of 9.796e-11

10

Using Jacobi preconditioner
Precondioned Gradient method converged in 27 iterations with a relative residual
of 7.290e-11

Commentaire 5 Comme on pouvait s’y attendre, l’utilise de la méthode du Gradient permet
de réduire encore le nombre d’itérations (27 au lieu de 34), par rapport au cas stationnaire avec la
valeur de 𝛼 optimale.

Pourtant, on remarque que l’utilise d’un préconditionneur est vital, car le nombre d’itérations
explose dans le cas non preconditionné.

11

	Assignment 4: Méthodes itératives pour systèmes linéaires
	Partie 1
	Partie 2
	Partie 3
	Partie 4
	Partie 5
	Partie 6

