[1]:

[2]:

Sol-Assignment 4 - Systemes linéaires
May 7, 2025

1 Assignment 4: Méthodes itératives pour systemes linéaires

Avant de voir le code disponible de ce test et avant de commencer a rédiger vos
réponses, prenez le temps de réfléchir a4 la maniére dont vous pouvez organiser le
travail.

o Pensez a quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.

o Réfléchissez a la structure de votre code (vous pouvez faire un brouillon sur
papier).

o Reéfléchissez aux sections du cours qui vous seront utiles pour I’analyse de vos
résultats.

On considere les systemes linéaires paramétrisés de dimension n de la forme Agx = by, ott

f()g(0) f(B)g(0) f(5%)g(0) 0 0
f(B)g(1) f(L)g(1) f(B)g(1) f(8%)g(1) 0 0
Ag=| f(B*9(2) [f(Bg(2) [f(1)g(2) f(B)g(2) F(6%)9(2) 0 € R,
0 0 F(Pen—1) fBgn—1) fL)gn—1)

b; € R" tel que bg=Agz1 (c-a-d x =1 est la solution exacte).

On choisi f(x) =1 — cos (%), g(x) = %cosh (%) et B €[0,1].

Pour une taille n et une valeur beta de données, on peut calculer A et b en utilisant la fonction
matrix(n, beta) définie plus loin.

importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

def matrix(n, beta)
Returns A_\beta and b given in the exercice.

f = lambda x: 1.0 - np.cos(np.pi/2*x)
g = lambda x: np.cosh(np.pi * x / n) / n
vec = np.array([g(k) for k in range(n)])

diagonals of the matriz

[£f(1)*vec,

f(betax*1)*vec[:-1],

f (beta**2)*vec[:-2]]

A = np.diag(d[0],k=0) + \
np.diag(d[1],k=1) + np.diag(d[1],k=-1) + \
np.diag(d[2],k=2) + np.diag(d[2],k=-2)

Q.
]

b

A.dot(np.ones(n))

return A,b

1.1 Partie 1

Ecrire une fonction Richardson, qui implemente la méthode de Richardson stationnaire précondi-
tionné. La fonction doit avoir la structure suivante:

def Richardson(A, b, x0, P, alpha, max_iter, tol)
Stationary Richardson method to approxzimate the solution of Az=b

#

INPUTS:

A : system matriz

#0b : system wvector

z0 : initial guess

P : preconditioner

alpha : constant relazation parameter

maz_iter : mazimum number of iterations

tol : tolerance on the relative residual

#

OUTPUTS

zk : approzimate solution to the linear system
rk : list of relative norms of the restduals

[3]: def Richardson(A, b, x0, P, alpha, max_iter, tol)

Stationary Richardson method to approximate the solution of Az=b
#

INPUTS:

A : system matriz

#Db : system wvector

x0 : initial guess

P : preconditioner

alpha : constant relazation parameter

maz_tter : mazimum number of iterations

tol : tolerance on the relative residual

#

OUTPUTS

zk : approzimate solution to the linear system

[4] :

Tes_norm : list of relative norms of the restiduals

xk = np.copy(x0)

rk = b - A.dot(xk)

res_norm = [np.linalg.norm(rk)]

rel_res = res_norm[-1] / np.linalg.norm(b)

k=20
while k < max_iter and rel_res > tol:

zk = np.linalg.solve(P, rk)
xk += alpha*zk
rk = b - A.dot(xk)

-+

res_norm.append(np.linalg.norm(rk))
rel_res = res_norm[-1] / np.linalg.norm(b)

k+=1
if k >= max_iter and rel_res >= tol:

print (f'Richardson did not converge in {max_iter} iterations;
f'the relative residual is {rel_res:.3el}')

else:
print(f'Richardson method converged in {k+1} iterations '
f'with a relative residual of {rel res:.3e}')

return xk, res_norm

1.2 Partie 2

On sait que si la matrice A est diagonale dominante stricte par ligne, alors la méthode de Gauss-
Seidel converge. Etablir si ¢’est le cas lorsqu’on fixe 8 = 0.4, pour une taille n=20.

Dans le cas affirmatif, calculer la solution du systeme par la commande Richardson en choisissant

les méthodes de Jacobi et Gauss-Seidel. On fixe une tolérance tol = 10710 et le point de départ
©) =9

X .

Est-ce que les résultats obtenus sont en accord avec la théorie 7 (Commentaire 1)
Aide: la somme des valeurs (en valeur absolue) dans toutes les lignes d’une matrice M peut etre cal-

culée de la maniére suivante: v = np.sum(np.abs (M), azis=1). L’output v est un numpy.array,
dont longeur est égale au nombre des lignes de la matrice M.

n = 20
beta = 0.4
[A, bl = matrix(n, beta)

check if A is diagonally dominant

x1 = np.sum(np.abs(A - np.diag(np.diag(A))), axis=1)
X2 = np.abs(np.diag(A))

print(f'A is diagonally dominant: {all(xl < x2)}')

x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print ('\nJacobi preconditioner')

P = np.diag(np.diag(A)) # Jacobi preconditioner
x, iters = Richardson(A, b, x0, P, 1, nmax, tol)
err = np.linalg.norm(x - np.ones(n))

print(f'The error is: {err:.3el}')

print ('\nGauss-Seidel preconditioner')

P = np.tril(A, 0) # Gauss-Seidel preconditioner
X, iters = Richardson(A, b, x0, P, 1, nmax, tol)
err = np.linalg.norm(x - np.ones(n))

print(f'The error is: {err:.3el}')

A is diagonally dominant: True

Jacobi preconditiomer

Richardson method converged in 26 iterations with a relative residual of
9.899%e-11

The error is: 8.369e-10

Gauss—-Seidel preconditioner

Richardson method converged in 14 iterations with a relative residual of
3.384e-11

The error is: 6.420e-10

Commentaire 1 Dans le cas 3 = 0.4, on vérifie numeriquement que la matrice A4 est a diagonale
dominante strict. Donc on déduit que les méthodes de Jacobi et Gauss-Seidel convergent. En fait,
on observe que Jacobi converge en 26 itérations et Gauss-Seidel en 14 itérations.

1.3 Partie 3

Tracer le graphe du rayon spectral p(f3) = max [Agg| (utiliser la commande np.linalg.eig pour
les valeures propes) des matrices d’itération de Jacobi B (/) et de Gauss-Seidel B g() en fonction
de B, pour 8 =0,0.1,0.2,---, 1.

D’apres ce graphe, que peut-on dire sur la convergence des deux méthodes en fonction du parameétre
57 Quelle méthode utiliseriez-vous pour résoudre le systéme dans le cas 8 = 0.7 ? Pourquoi 7 Est-ce
qu’on s’attend au méme nombre d’itérations que dans le cas § = 0.4 ? (Commentaire 2)

[5]:

[6]:

n =

20

betas = np.linspace(0,1,11)

rho_

for

plt.

plt
plt

plt
plt
plt
plt

plt

plt.

j, tho_gs = [1, [
beta in betas :
[A, b] = matrix(n,beta)

Jacobt

Pj = np.diag(np.diag(A))

Bj = np.eye(n) - np.linalg.solve(Pj, A)
rho_j.append(np.max(np.abs(np.linalg.eig(Bj) [0])))

Gauss-Siedel

Pgs = np.tril(4,0)

Bgs = np.eye(n) - np.linalg.solve(Pgs,A)
rho_gs.append (np.max(np.abs(np.linalg.eig(Bgs) [0])))

figure()

.plot(betas, rho_j, 'b:o', label='Jacobi')
.plot(betas, rho_gs, 'g:o', label='Gauss-Seidel')

.plot(np.linspace(0,1,50), np.ones(50), 'r-');

.xlabel (r'β', fontsize=15)
.ylabel(r'$\rho(B)$', fontsize=15)
-x1im([0,1])

plt.
.grid(linestyle='--"', linewidth=.5)

legend (fontsize=15)

show ()

[7]:

3.5 1 e Jacobl .".‘J

.o ~® Gauss-Seidel S

2.5

2.0 . 5

p(B)

1.5 - .

1.0 nas

0.8 1.0

Commentaire 2 On voit que le rayon spectral de la matrice d’itération de la méthode de Gauss-
Seidel est toujours plus petit que celui de la matrice d’itération de la méthode de Jacobi, ce qui
signifie que la méthode de Gauss-Seidel converge plus vite. En outre, on voit que la méthode
de Jacobi converge seulement pour S plus petit qu’une valeur proche a 0.6, alors que celle de
Gauss-Seidel demeure convergente jusqu’a 8 = 0.8 & peu pres.

Si 8 = 0.7, on doit forcemment utiliser la méthode de Gauss-Seidel pour garantir la convergence
des itérations. Avec reférence au cas § = 0.4, on s’attend un nombre plus élevé d’itérations, car le
rayon spectral de la matrice B est plus haut.

1.4 Partie 4

Maintenant, on consideére la matrice Ag et le vecteur bg que I'on obtient pour n=100. Dans ce cas,
pour 3= 0.25 et 3 = 0.50, tracer et comparer les graphes semilogy de la norme du résidu r®) en
fonction du nombre d’itérations pour la méthode de Jacobi.

Donner un commentaire, en considerant les pentes des courbes obtenues. Est-ce qu’on s’attend de
résultats similaires pour la méthode de Gauss-Seidel ? (Commentaire 3)

n = 100
x0 = np.zeros(n)
tol = 1e-10

nmax = 500

beta = 0.25

[A, b] = matrix(n,beta)

P = np.diag(np.diag(A))

_, res_beta25 = Richardson(A, b, x0, P, 1, nmax, tol)

beta = 0.5

[A, b] = matrix(n,beta)

P = np.diag(np.diag(A))

_, res_betab0 = Richardson(A, b, x0, P, 1, nmax, tol)

Richardson method converged in 14 iterations with a relative residual of
3.789%-11
Richardson method converged in 72 iterations with a relative residual of
8.737e-11

[8]: plt.figure()

plt.semilogy(res_beta25, 'b:o', label=r'$\beta = 0.253%')
plt.semilogy(res_betab0, 'g:o', label=r'$\beta = 0.50%')

plt.legend(fontsize=15)

plt.xlabel(r'k', fontsize=15)
plt.ylabel('Absolute Residual', fontsize=15);
plt.grid(linestyle='--', linewidth=.5)
plt.show()

[9]:

lﬂl} i

102 1

104 1

1075 1

Absolute Residual

1078 1

10~10 +

Commentaire 3 On voit tres clairement que, si on prend 5 = 0.50, la convergence est beaucoup
plus lente (la pente du graphe est inférieure). Ceci nous confirme que le rayon spectral de la matrice
d’itération de la méthode de Jacobi croit lorsque 8 augmente. Les conséquences sont une vitesse
de convergence réduite et, pour 5 plus grand qu’'une certaine valeur critique (que ’on peut estimer
étre ~ 0.6), la non-convergence de la méthode.

Sur la base de resultats obtenus dans la Partie 3, on sait que le rayon spectral de la matrice
d’iteration de Gauss-Seidel a la meme comportement (par rapport a) que ce de la matrice de
Jacobi, mais c¢’est plus petit. Par conseuquent, avec Gauss-Seidel on aurait encore une convergence
plus lente si 8 = 0.50, mais le nombre d’iterations serait inferieur que dans le cas de Jacobi.

1.5 Partie 5

D’aprés la théorie vue en classe, est-il possible d’ameliorer la convergence de la méthode de Richard-
son stationnaire avec le préconditionneur de Jacobi ? Si oui, comment ?

Verifiez votre hypothése numeriquement, en choisissant n=100 et 5 = 0.5. Donner un commentaire
sur les résultats obtenus. (Commentaire 4)

beta = 0.5
[A, b] = matrix(n,beta)

P = np.diag(np.diag(A))

lambdas, _ = np.linalg.eig(np.linalg.solve(P, A))
alpha_opt = 2 / (lambdas[0] + lambdas[-1])

_ = Richardson(A, b, x0, P, alpha_opt, nmax, tol)

Richardson method converged in 34 iterations with a relative residual of
9.405e-11

Commentaire 4 La matrice A est symeétrique et definie positive. Comme le préconditionneur
de Jacobi est aussi symetrique et defini positif, on peut mimimiser le rayon spectral de la matrice

d’itération en choisissant 5

PIA) 1A

o =

A P14

min (max (

Les résultats numériques confirment les attentes théoriques, car la méthode maintenant converge
en seulement 34 itérations, au lieu qu’en 72 itérations.

1.6 Partie 6

La convergence peut étre encore ameliorée si on considére des méthodes de Richardson non-
stationnaires, dans lesquels la valeur du parameétre a change au cours des itérations. L’example le
plus simple est donné par la méthode du Gradient Preconditionee.

Ecrire une nouvelle fonction PrecGradient, en modifiant de maniére appropriée la fonction
Richardson créée dans la Partie 1. Vérifier la convergence de la méthode en prenant n=100 et
B = 0.5, et en considerant: * le cas pas preconditionné (c-a-d P = np.eye(n)); * le précondition-
neur de Jacobi.

Donner un commentaire sur la base des résultats obtenus. (Commentaire 5)

[10]: def PrecGradient(A, b, x0, P, max_iter, tol)
Preconditioned gradient method to approximate the solution of Az=b

#

INPUTS:

A : system matriz

#Db : system wvector

z0 : initial guess

P : preconditioner

maz_tter : mazimum number of iterations

tol : tolerance on the relative residual

#

OUTPUTS

zk : approzimate solution to the linear system
res_morm : list of relative norms of the residuals
xk = np.copy(x0)

rk = b - A.dot(xk)

res_norm = [np.linalg.norm(rk)]
rel_res = res_norm[-1] / np.linalg.norm(b)

k=20
while k < max_iter and rel_res > tol:

zk = np.linalg.solve(P, rk)
alpha = zk.dot(rk) / zk.dot(A.dot(zk)) # line to be added !!

xk += alpha*zk
rk = b - A.dot(xk)

res_norm.append(np.linalg.norm(rk))
rel_res = res_norm[-1] / np.linalg.norm(b)

k += 1

if k >= max_iter and rel_res >= tol:
print (f'Precondioned Gradient did not converge in {max_iter} iterations;

f'the relative residual is {rel_res:.3el}')
else:
print(f'Precondioned Gradient method converged in {k+1} iterations '
f'with a relative residual of {rel _res:.3e}')

return xk, res_norm

[11]: 'n = 100
beta = 0.5
[A, b] = matrix(n, beta)

x0 = np.zeros(n)
tol = 1e-10
nmax = 500

print ("Without preconditioning")

P = np.eye(n)

_ = PrecGradient(A, b, x0, P, nmax, tol)
print("\n")

print ("Using Jacobi preconditioner")
P = np.diag(up.diag(A))
_ = PrecGradient(A, b, x0, P, nmax, tol)

Without preconditioning
Precondioned Gradient method converged in 228 iterations with a relative
residual of 9.796e-11

10

Using Jacobi preconditioner
Precondioned Gradient method converged in 27 iterations with a relative residual
of 7.290e-11

Commentaire 5 Comme on pouvait s’y attendre, I'utilise de la méthode du Gradient permet
de réduire encore le nombre d’itérations (27 au lieu de 34), par rapport au cas stationnaire avec la
valeur de « optimale.

Pourtant, on remarque que 'utilise d’un préconditionneur est vital, car le nombre d’itérations
explose dans le cas non preconditionné.

11

	Assignment 4: Méthodes itératives pour systèmes linéaires
	Partie 1
	Partie 2
	Partie 3
	Partie 4
	Partie 5
	Partie 6

